Iteration Bounds for Finding the -Stationary Points for Structured Nonconvex Optimization
نویسندگان
چکیده
In this paper we study proximal conditional-gradient (CG) and proximal gradient-projection type algorithms for a block-structured constrained nonconvex optimization model, which arises naturally from tensor data analysis. First, we introduce a new notion of -stationarity, which is suitable for the structured problem under consideration. We then propose two types of first-order algorithms for the model based on the proximal conditional-gradient (CG) method and the proximal gradient-projection method respectively. If the nonconvex objective function is in the form of mathematical expectation, we then discuss how to incorporate randomized sampling to avoid computing the expectations exactly. For the general block optimization model, the proximal subroutines are performed for each block according to either the blockcoordinate-descent (BCD) or the maximum-block-improvement (MBI) updating rule. If the gradient of the nonconvex part of the objective f satisfies ‖∇f(x) − ∇f(y)‖q ≤ M‖x − y‖p where δ = p/q with 1/p + 1/q = 1, then we prove that the new algorithms have an overall iteration complexity bound of O(1/ ) in finding an -stationary solution. If f is concave then the iteration complexity reduces to O(1/ ). Our numerical experiments for tensor approximation problems show promising performances of the new solution algorithms.
منابع مشابه
Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization
We propose a first order interior point algorithm for a class of nonLipschitz and nonconvex minimization problems with box constraints, which arise from applications in variable selection and regularized optimization. The objective functions of these problems are continuously differentiable typically at interior points of the feasible set. Our first order algorithm is easy to implement and the ...
متن کاملSmoothing augmented Lagrangian method for nonsmooth constrained optimization problems
In this paper, we propose a smoothing augmented Lagrangian method for finding a stationary point of a nonsmooth and nonconvex optimization problem. We show that any accumulation point of the iteration sequence generated by the algorithm is a stationary point provided that the penalty parameters are bounded. Furthermore, we show that a weak version of the generalized Mangasarian Fromovitz constr...
متن کاملAccelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent
Nesterov's accelerated gradient descent (AGD), an instance of the general family of"momentum methods", provably achieves faster convergence rate than gradient descent (GD) in the convex setting. However, whether these methods are superior to GD in the nonconvex setting remains open. This paper studies a simple variant of AGD, and shows that it escapes saddle points and finds a second-order stat...
متن کاملAn Enhanced Spatial Branch-and-Bound Method in Global Optimization with Nonconvex Constraints
We discuss some difficulties in determining valid upper bounds in spatial branch-and-bound methods for global minimization in the presence of nonconvex constraints. In fact, two examples illustrate that standard techniques for the construction of upper bounds may fail in this setting. Instead, we propose to perturb infeasible iterates along Mangasarian-Fromovitz directions to feasible points wh...
متن کاملStructured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis
Nonconvex optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its convex counterpart. This paper aims to take one step i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014